Ambidentate coordination of the tripyridyl ligands 2,2':6',2"-terpyridyl, tris(2-pyridyl)-amine, tris(2-pyridyl)methane and tris(2-pyridyl)phosphine to carbonylrhenium centres: structural and spectroscopic studies*

Peter A Anderson,† F Richard Keene,†‡ Ernst Horn§ and Edward R T Tiekink§ † Department of Chemistry and Biochemistry, James Cook University of North Queensland Townsville, Queensland 4811, Australia, and § Department of Physical and Inorganic Chemistry, University of Adelaide, GPO Box 498, Adelaide, South Australia 5001, Australia

Received 12 January 1990 Accepted 12 March 1990

The reactions of [Re(CO)₅Cl] with the ligands tpy (2,2':6',2''-terpyridine), py_3N {tris(2-pyridyl)amine}, pv₃CH {tris(2-pyridyl)methane}, and pv₃P {tris(2-pyridyl)phosphine} in toluene solution realize compounds with the general formulation [Re(ligand)(CO)₃Cl] in which the tripyridyl ligands are bidentate. X-ray structural determinations of fac-[Re(tpy)(CO)₃Cl].H₂O fac-[Re(py₃N)(CO)₃Cl] confirm these assignments. [Re(tpy)(CO)₃Cl].H₂O (C₁₈H₁₃ClN₃O₄Re) monoclinic, space group $P2_1/n$, with cell dimen $a = 7.432(2) \text{ Å}, \quad b = 17.016(4) \text{ Å},$ 14.466(2) Å, $\beta = 93.51(2)^{\circ}$, and Z = 4; full-matrix least-squares refinement on 2435 reflections with $I \ge 2.5\sigma(I)$ converged to a final R = 0.028 and $R_w =$ 0.029. $[Re(py_3N)(CO)_3CI]$ $(C_{18}H_{12}CIN_4O_3Re)$ is triclinic, space group P1 with cell dimensions a = 13.761(2) Å, b = 14.636(6) Å, c = 11.110(2) Å, $\alpha = 110.70(2)^{\circ}$, $\beta = 102.45(2)^{\circ}$, $\gamma = 107.48(2)^{\circ}$, and Z=4; full-matrix least-squares refinement on 3459 reflections with $I \ge 2.5\sigma(I)$ converged to a final R = 0.038 and $R_w = 0.039$. If the synthetic procedure is undertaken under irradiation by visible the light. ligand py_3N [Re(py₃N)(CO)₂Cl] (characterized by infrared spectroscopy and conductance measurements) is also formed, in which the ligand py₃N is tridentate. No analogous tridentate species is formed with the ligands tpy or py₃P, although there is evidence that it also forms for py₃CH.

Keywords: Rhenium, carbonyl, terpyridyl, tris(2-pyridyl)amine, tris(2-pyridyl)methane, tris(2-pyridyl)phosphine, structure

INTRODUCTION

Interest in the chemistry of the 'Greenhouse' gas carbon dioxide has increased substantially in recent years: in particular, its conversions to C₁ feedstocks for chemicals manufacture (e.g. carbon monoxide, formaldehyde, methanol) or to potential fuels (e.g. methanol, methane) have attracted particular attention. The direct electrochemical reduction of CO₂ at metal electrodes is generally non-specific and is attended by large overpotentials. However, a number of molecular electrocatalysts have been developed which mediate the electrochemical reduction and substantially reduce the overpotential.¹

One such group of catalysts are the polypyridine complexes of rhenium of the general form [Re(L—L)(CO)₃X] {L—L=2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen), or their derivatives; X=Cl or Br}, which have been studied particularly by Hawecker *et al.*,³ Meyer and Sullivan and co-workers,³⁻⁵ and Kutal *et al.*⁶ The complexes act as efficient homogeneous catalysts for the selective and sustained reduction of CO₂ to carbon monoxide (CO); furthermore, the reduction can be promoted either electrochemically or photochemically. The large turnover numbers observed are a consequence in part of

^{*} Supplementary material is lodged with the Cambridge Crystallographic Data Centre, UK.

the stability of the catalyst with respect to deactivation reactions with the dominant product, CO. Despite the considerable attention directed towards the reactivity of CO₂ with such catalysts, the intimate mechanism of the reduction of CO₂ is a matter of considerable conjecture. The elucidation of the key electron-, proton- and atomtransfer steps in such processes is clearly required for the rational design of effective catalysts.

With this in mind, we undertook a study of the synthesis and reactivities of a series of carbonylrhenium compounds incorporating the ligands py₃X, where py₃X represents the ligands tris(2pyridyl)amine (py_3N) , tris(2-pyridyl)methane (py₃CH), and tris(2-pyridyl)phosphine (py₃P). These tripodal π -acceptor ligands offer a greater synthetic versatility than the bidentate 2,2'bipyridine and 1,10-phenanthroline ligands by virtue of possible variation of the bridging atom, heterocyclic rings (e.g. 2-pyridyl, methylimidazole, or 2-pyrrazolyl),7 and the substituents on the heterocyclic rings. Such versatility might be expected to allow a subtle control over the redox chemistry which is not possible with bipyridineorphenanthrolinespecies. Furthermore, electrochemical studies of the bis(ligand)cobalt complexes indicate the ability of these tripodal ligands to stabilize low oxidation states of metal extent comparable an 2,2'-bipyridine.8 It was our hope that by subtle variation of the redox properties of the polypyridyl complexes of carbonylrhenium centres, a new mechanistic insight would be possible into the role of such metal species in their catalysis of CO₂ reduction processes.

$$py_{3}X (X = N, CH, P)$$

The recent report by Juris et al.⁹ of the synthesis of a related species containing the potentially tridentate ligand tpy, which was purported to be '[Re(tpy)(CO)₂Cl]', and of its ability to catalyse the electrochemical reduction of carbon dioxide, gave impetus to the proposal for the mechanistic studies of bis(carbonyl)rhenium species containing the tripodal ligands. However, during the synthetic aspects of this work, a number of anomalies arose relating to the characterization of these '[Re(tridentate)(CO)₂Cl]' complexes—in

particular, the tendency of terpyridine to function as a bidentate rather than a tridentate ligand, and the ambidentate (bidentate/tridentate) ligating properties of the tripodal ligands.

The present paper reports structural and spectroscopic studies of carbonylrhenium compounds of these tripyridyl ligands, together with some initial observations on their electrochemistry and reactivity.

EXPERIMENTAL

Materials

[Re(CO)₅Cl] (Pressure Chemical Co.), 2,2'bipyridine (Strem) and 2,2':6',2"-terpyridine (Aldrich) were used as supplied; all other chemicals and solvents were of AR grade (where available). For the electrochemical experiments, the solvent 1-methyl-2-pyrrolidinone (NMP; Aldrich HPLC grade) was purified by fractional distillation under reduced pressure following over anhydrous MgSO₄. Dimethylformamide (DMF; BDH) was twice fractionally distilled under vacuum. Acetonitrile (BDH HIPerSolv 'Far UV'), used for the conductance measurements, was dried over calcium hydride and fractionally distilled. Tetra-n-butylammonium tetrafluoroborate (TBA.BF₄; Fluka; puriss) was used as the supporting electrolyte.

Instrumentation

Infrared spectra were measured in dichloromethane solution using a Perkin-Elmer 1600 Series FTIR. All electronic spectra were recorded on a Varian Cary 219 spectrophotometer. Electrochemical measurements were performed in an argon atmosphere and were recorded on a BAS 100A Electrochemical Analyzer using a glassy carbon working electrode and an Ag⁺/Ag reference electrode (0.01m AgNO₃ in acetonitrile/ 0.1 M TBA.BF₄; which is +0.31 v vs s.s.c.e.). measurements Conductance in acetonitrile (CH₃CN) were performed with Kerr Universal B221 conductance bridge. Microanalyses were performed within the Department (JCUNQ) or by the Canadian Microanalytical Service (Delta, B.C.).

Synthesis of ligands

Tris(2-pyridyl)amine,¹⁰ tris(2-pyridyl)methane,¹¹ tris(2-pyridyl)methanol¹² and tris(2-pyridyl)phosphine¹¹ were prepared by literature methods.

Synthesis of rhenium compounds

The synthesis of the rhenium complexes was from a general method described by Juris et al. 9

(2,2'-Bipyridine)tricarbonylchlororhenium(I), [Re(bpy)(CO)₃Cl]

2,2'-Bipyridine (72.5 mg, 0.46 mmol) was added to a solution of [Re(CO)₅Cl] $(167.5 \, \text{mg})$ 0.46 mmol) in toluene (80 ml, 80°C) under an argon atmosphere, which resulted in an immediate colour change from almost colourless to bright yellow and precipitation of a yellow complex within 1 min. The mixture was stirred and heated overnight. On cooling, the yellow precipitate was isolated by filtration, washed with petroleum spirit, and air-dried. Yield: 181 mg, 85%. The product was recrystallized twice from dichloromethane/petroleum spirit. Analysis: Calcd for $ReC_{13}H_8ClN_2O_3$: C, 33.8; H, 1.75; N, 6.1. Found: C, 33.7; H, 1.79; N, 6.1%.

Tricarbonylchloro(2,2':6',2"-terpyridine)-rhenium(1) hydrate, [Re(tpy)(CO)₃Cl],H₂O

2,2':6',2"-Terpyridine (56.8 mg, 0.24 mmol) was added to a solution of [Re(CO)₅Cl] (88.1 g, 0.24 mmol) in toluene (30 ml, 60°C) under an argon atmosphere. The solution gradually deepened in colour with a yellow precipitate forming after *ca* 20 minutes. The mixture was stirred and maintained at 80°C overnight. On cooling, the yellow precipitate was collected by filtration and recrystallized from dichloromethane/petroleum spirit. Yield: 100 mg, 80%. Analysis: Calcd for ReC₁₈H₁₁ClN₃O₃.H₂O: C, 38.8; H, 2.35; N, 7.5; Cl, 6.4. Found: C, 38.7; H, 2.33; N, 7.5; Cl, 6.4%.

Tricarbonylchloro{tris(2-pyridyl)amine}-rhenium(I) and Dicarbonylchloro-{tris(2-pyridyl)amine}rhenium(I), [Re(py₃N)(CO)_xCl] (x = 2,3)

Tris(2-pyridyl)amine (162 mg, 0.65 mmol) was added to a solution of [Re(CO)₅Cl] (235 mg, 0.65 mmol) in toluene (110 ml, 82°C) under a nitrogen atmosphere. The mixture was heated and stirred while illuminated by a 100 W tungsten floodlight for 70 h. The resultant pale orange solution was separated from a red precipitate by

centrifugation. The supernatant was evaporated (rotary evaporator) to yield a pale orange compound.

For the pale orange compound, [Re(py₃N)(CO)₃Cl]: yield = 202 mg, 56% (based on total conversion of [Re(CO)₅Cl] to this product). Analysis: Calcd for ReC₁₈H₁₂ClN₄O₃: C, 39.0; H, 2.37; N, 10.1. Found: C, 39.3; H, 2.30; N, 10.0%.

For the red compound, [Re(py₃N)(CO)₂Cl]: yield = 95 mg, 28% (based on total conversion of [Re(CO)₅Cl] to this product). Analysis: Calcd for ReC₁₇H₁₂ClN₄O₂ · 0.25C₆H₅CH₃: C, 41.0; H, 2.57; N, 10.2; Cl, 6.5. Found: C, 40.6; H, 2.73; N, 9.6; Cl, 7.2%.

Tricarbonylchloro{tris(2-pyridyl)phosphine}-rhenium(I), [Re(py₃P)(CO)₃CI]

Tris(2-pyridyl)phosphine (131 mg, 0.49 mmol) was added to a solution of [Re(CO)₅Cl] (178 mg, 0.49 mmol) in toluene (80 ml, 70°C) under an argon atmosphere. The mixture was heated and stirred while illuminated by a 100 W tungsten floodlight for 60 h. The volume of the reaction mixture was reduced to ca 10 ml (rotary evaporator) and a brown-orange solid was precipitated by the addition of petroleum spirit. The collected precipitate was recrystallized twice from dichloromethane/petroleum Yield = spirit. Analysis: 150 mg. 56%. Calcd for ReC₁₈H₁₂ClN₃PO₃: C, 37.9; H, 2.12; N, 7.4. Found: C, 37.6; H, 2.32; N, 7.8%.

Using a similar synthetic method, a yelloworange complex containing the ligand tris(2pyridyl)methane (py₃CH) was synthesized in 85% yield (based on a product [Re(py₃CH)(CO)₃Cl]).

Crystallography

 $[Re(tpy)(CO)_3Cl)].H_2O$ Crystals of [Re(py₃N)(CO)₃Cl] were grown by layer diffusion of petroleum spirit into solutions of the respective compounds in dichloromethane. Intensity data for [Re(tpy)(CO)₃Cl].H₂O and [Re(py₃N)(CO)₃Cl] were measured at room temperature using the ω : 2θ scan technique on an Enraf-Nonius CAD4F diffractometer fitted with graphite monochromated MoK α radiation, $\lambda =$ 0.7107 Å. No decomposition of either crystal occurred during its respective data collection. Data were corrected for Lorentz and polarization effects and an analytical absorption was applied in each case. 13 Crystal data are given in Table 1.

Compound	[Re(tpy)(CO) ₃ Cl].H ₂ O	[Re(py ₃ N)(CO) ₃ Cl]
Formula	$C_{18}H_{13}CIN_3O_4Re$	$C_{18}H_{12}CIN_4O_3Re$
Mol. wt	557.0	541.9
Crystal system	Monoclinic	Triclinic
Space group	$P2_1/n$	$P\bar{1}$
a, Å	7.432(3)	13.761(2)
b, Å	17.016(4)	14.636(6)
c, Å	14.466(2)	11.110(2)
α , deg	90	110.70(2)
β , deg	93.51(2)	102.45(2)
γ, deg	90	107.48(2)
V , \mathring{A}^{-3}	1826.0	1862.2
Z	4	4
$D_{\rm c}({\rm gcm^{-3}})$	2.026	1.933
F(000)	1064	1056
μ , cm ⁻¹	68.81	67.45
Transmission factors (maximum)	0.560; 0.401	0.747; 0.584
Θ limits, deg	1.5-25.0	1.5-24.0
No. of data collected	4165	5974
No. of unique data	3215	5842
No. of unique reflections used with $I \ge 2.5\sigma(I)$	2435	3459
R	0.028	0.038
g	0.002	0.003
$R_{\rm w}$	0.029	0.039
Residual $ ho_{\rm max}$, e Å 3	0.98	1.85

Table 1 Crystal data for fac-[Re(tpy)(CO)₃Cl].H₂O and fac-[Re(py₃N)(CO)₃Cl]

The structure of fac-[Re(tpy)(CO)₃Cl].H₂O was solved from the interpretation of the Patterson whilst that synthesis of fac-[Re(py₃N)(CO)₃Cl] was solved by direct methods. The structures were each refined by a full-matrix least-squares procedure based on F. 13 All non-H atoms were refined with anisotropic thermal parameters in [Re(tpy)(CO)₃Cl].H₂O and the Re, Cl, carbonyl groups and amine-N atoms in [Re(py₃N)(CO)₃Cl] were refined anisotropically; the remaining non-H atoms were refined with isotropic thermal parameters for the latter structure. Hydrogen atoms were included at their calculated positions. The locations of the py-N atom in the noncoordinating pyridyl rings were confirmed by comparing the associated bond distances for both conformations. The refinements were continued until convergence after the introduction of a weighting scheme of the form w = $[\sigma^2(F) + g|F|^2]^{-1}$. Refinement details are listed in Table 1.

Fractional atomic coordinates are given in Tables 2 and 3 and the numbering schemes for both compounds are shown in Figs 2 and 3 (diagrams drawn with ORTEP¹⁴ at 25% and 15% probability ellipsoids, respectively). Scattering

factors for neutral Re (corrected for f' and f'') were from Ref. 15 and those for the remaining atoms were as incorporated in SHELX. Scalculations were performed on a SUN4/280 computer.

For both structures, full listings of the thermal parameters, hydrogen atom parameters, all bond distances and angles, and the observed and calculated structure factors are available on request from one of the authors (ERTT).

RESULTS AND DISCUSSION

Characterization and structural details

fac-[Re(bpy)(CO)₃Cl]

The [Re(bpy)(CO)₃Cl] species, and other [Re(bpy)(CO)₃X] compounds, have been characterized to have the chloro ligand *cis* to both ligating N atoms of the 2,2'-bipyridine ligand, with the three carbonyl ligands occupying a *facial* disposition in the coordination octahedron. A number of structural determinations of compounds of this type confirm the stereochemistry—

Table 2 Fractional atomic coordinates ($\times 10^5$ for Re; $\times 10^4$ for other atoms) for fac-[Re(tpy)(CO)₃CI].H₂O

Atom	х	у	z	
Re	20257(3)	5091(1)	24385(1)	
Cl	4420(2)	1481(1)	2892(1)	
O(1)	2296(9)	910(3)	381(3)	
O(2)	-886(8)	-711(3)	1942(4)	
O(3)	4886(9)	-713(3)	2073(5)	
N(1)	2027(7)	305(3)	3920(4)	
N(2)	228(6)	1421(3)	2952(3)	
N(3)	-312(9)	2388(3)	908(4)	
C(1)	2164(10)	791(4)	1148(5)	
C(2)	200(10)	-247(4)	2134(5)	
C(3)	3802(10)	-263(4)	2201(5)	
C(4)	2833(9)	-303(4)	4351(5)	
C(5)	3017(10)	-346(5)	5306(5)	
C(6)	2378(11)	254(6)	5826(5)	
C(7)	1525(10)	876(5)	5392(5)	
C(8)	1345(9)	899(4)	4426(4)	
C(9)	334(8)	1513(4)	3890(4)	
C(10)	-486(10)	2137(4)	4328(5)	
C(11)	-1422(10)	2684(4)	3787(5)	
C(12)	-1581(10)	2596(4)	2837(5)	
C(13)	-744(9)	1952(3)	2450(5)	
C(14)	-1067(9)	1842(4)	1423(4)	
C(15)	-2182(10)	1261(4)	1066(5)	
C(16)	-2498(12)	1217(5)	117(6)	
C(17)	-1733(11)	1749(5)	-430(5)	
C(18)	-655(13)	2316(5)	-17(5)	
O(w)	3298(10)	2976(4)	1554(5)	

for example, of $[Re(bpy)(CO)_3(PO_2F_2)]$, ¹⁶ $[Re(bpy)(CO)_3(HCOO)]$, ¹⁷ $[Re(bpy)(CO)_3(NCBH_3)]$, ¹⁷ and a related dimeric hydrido species $[Re_2(bpy)_2(CO)_6(\mu-H)]Cl$. ¹⁷

The electrochemical characteristics, as well as the electronic and infrared spectral properties of this compound, are listed in Table 4, together with the data for the other compounds involved in this study. The infrared spectrum in the region $2100-1800 \,\mathrm{cm}^{-1}$ (carbonyl stretch) is shown in Fig. 1A, where three $\nu(\mathrm{CO})$ absorptions are observed (point group symmetry C_s).

fac-[Re(tpy)(CO)₃Cl]

The physical properties of the compound assigned as $[Re(tpy)(CO)_2Cl]$ by Juris et al.⁹ are virtually identical to those of $[Re(bpy)(CO)_3Cl]$ (Table 4). This led us to consider an alternative formulation in which the tpy ligand was bidentate and the structure analogous to $[Re(bpy)(CO)_3Cl]$: certainly, the infrared characteristics (viz. the three $\nu(CO)$ absorptions, Fig. 1B) and the conductance

Table 3 Fractional atomic coordinates ($\times 10^5$ for Re; $\times 10^4$ for other atoms) for fac-[Re(py₃N)(CO)₃Cl]

Atom	х	у	z
Re(1a)	34973(4)	67200(3)	27333(5)
Cl(1a)	3623(3)	7229(3)	852(3)
O(la)	5297(9)	8895(9)	4879(12)
O(2a)	1868(8)	7704(8)	3301(11)
O(3a)	3390(9)	6046(9)	5022(10)
C(1a)	4630(10)	8078(11)	4108(15)
C(2a)	2478(11)	7324(10)	3090(14)
C(3a)	3431(10)	6276(11)	4148(14)
C(4a)	5548(9)	6519(9)	2146(11)
C(5a)	6290(10)	6090(10)	1870(13)
C(6a)	6049(10)	5048(10)	1596(13)
C(7a)	5045(9)	4425(10)	1583(12)
C(8a)	4344(8)	4917(9)	1900(11)
N(1a)	4599(7)	5952(7)	2180(9)
C(10a)	2374(9)	4252(9)	908(11)
C(11a)	1647(10)	3272(10)	-165(13)
C(12a)	762(11)	3198(11)	-1108(14)
C(13a)	652(10)	4136(10)	-955(13)
C(14a)	1430(10)	5104(10)	83(12)
N(2a)	2282(7)	5180(7)	1040(9)
C(15a)	3138(9)	3803(9)	2680(12)
C(16a)	3984(12)	3723(12)	3494(15)
C(17a)	3712(12)	3209(12)	4327(15)
C(18a)	2636(12)	2826(12)	4267(16)
C(19a)	1860(13)	2922(12)	3399(15)
N(3a)	2113(9)	3431(9)	2616(12)
N(4a)	3303(7)	4340(8)	1858(10)
Re(1b)	80899(3)	01144(3)	26242(5)
Cl(1b)	6763(2)	8304(2)	824(3)
O(1b)	7629(9)	9554(10)	4898(11)
O(2b)	9940(8)	9400(8)	3112(10)
O(3b)	9734(9)	12349(8)	4791(11)
C(1b)	7815(11)	9810(11)	4068(14)
C(2b)	9231(10)	9675(9)	2893(13)
C(3b)	9101(11)	11518(11)	3963(14)
C(4b)	5773(9)	10055(9)	2303(12)
C(5b)	4885(10)	10318(11)	2064(13)
C(6b)	4932(11)	11067(11)	1595(13)
C(7b)	5876(9)	11601(10)	1443(12)
C(8b)	6765(9)	11324(9)	1772(11)
N(1b)	6722(7)	10564(7)	2200(10)
C(10b)	8041(9)	11155(9)	606(12)
C(11b)	8092(9)	11312(9)	-536(12)
C(12b)	8340(10)	10664(10)	-1510(13)
C(13b)	8569(11)	9822(11)	-1283(14)
C(14b)	8501(9)	9720(10)	-134(12)
N(2b)	8244(7)	10367(7)	827(9)
C(15b)	8363(9)	12926(9)	2241(12)
C(16b)	8020(11)	13638(10)	2991(13)
C(17b)	8691(12)	14715(12)	3572(16)
C(18b)	9681(13)	15058(13)	3458(16)
C(19b)	9998(12)	14320(12)	2709(15)
N(3b)	9318(9)	13240(9)	2079(12)
N(4b)	7755(8)	11815(7)	1600(10)

(indicating a zero-charged species) favoured the formulation [Re(tpy)(CO)₃Cl]. A similar rationalization has been made previously for the related compound [Re(tpy)(CO)₃(NO₃)].¹⁸

Accordingly, we undertook an X-ray crystal structure determination of the terpyridine compound to settle this ambiguity.

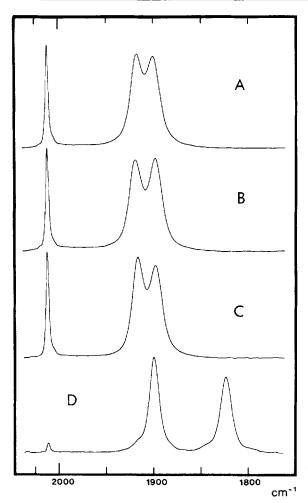
The molecular structure of fac-[Re(tpy)-(CO)₃Cl].H₂O is shown in Fig. 2 and selected bond distances and angles are given in Table 5. The Re atom exists in a distorted octahedral environment defined by a facial arrangement of the three carbonyl groups, and a Cl atom and two N atoms which occupy the other octahedral face. The N atoms are cis and are derived from the tpy ligand which is functioning in the bidentate mode. The non-coordinating N atom, N(3), is directed away from the Re atom and the Re · · · N separation is 4.20 Å. The major distortion from regular octahedral symmetry arises as a result of the bite angle restricted of the N(1)-Re-N(2) 75.2(2)°. The N(1)-C(8)C(9)-N(2) torsion angle is -1.1° and the N(2)-C(13)C(14)-N(3) torsion angle is -114.9° . [Re(tpy)(CO)₃Cl].H₂O was found to crystallize as a monohydrate and this water molecule is closely associated with the Cl and N(3) atoms. The $Cl \cdots O(w)$ and $N(3) \cdots O(w)$ separations are calculated to be 3.27 and 2.96 Å, respectively.

$[Re(py_3N)(CO)_xCI]$ (x = 2, 3)

Using a synthetic procedure analogous to that for fac-[Re(bpy)(CO)₃Cl] and fac-[Re(tpy)(CO)₃Cl], a product was isolated which exhibited similar infrared spectral characteristics when [Re(CO)₅Cl] was reacted with py₃N.

When the synthesis was repeated but under intense irradiation by visible light, two products were formed. A toluene-soluble form, which was identical to product obtained in the absence of light, has the infrared spectrum shown in Fig. 1C,

and an X-ray structural determination indicates that the tripodal ligand is coordinated in a bidentate manner and the formulation of the complex is fac-[Re(py₃N)(CO)₃Cl].


The molecular structure of fac-[Re(py₃N)-(CO)₃Cl] is shown in Fig. 3, and selected interatomic parameters are given in Table 6. There are two molecules in the crystallographic asymmetric unit for this compound, designated a and b respectively. The numbering scheme for molecule a is shown in Fig. 3 and that of molecule b is identical. There are no major differences between molecules a and b of [Re(py₃N)(CO)₃Cl], with the maximum difference occurring for the N(1)-Re-C(3) angle of 92.1(4)° for molecule a compared with 94.7(5)° for molecule b. As found for the tpy derivative, the Re atom in [Re(py₃N)(CO)₃Cl] exists in a distorted octahedral environment with a facial arrangement of the three carbonyl groups. The remaining three positions are occupied by the Cl atom and two N atoms of the potentially tridentate py₃N ligand. The amine N atom, N(4), is 3.18 Å (3.19 Å) for molecule b) from the central Re atom, which does not indicate a significant bonding interaction between these atoms. The N(1)-Re-N(2) chelate angle is $80.8(3)^{\circ}$ { $81.8(3)^{\circ}$ for molecule **b**} which represents the maximum deviation from ideal octahedral symmetry in the structure. The N-Re-N chelate angles are larger here than in the [Re(tpy)(CO)₃Cl] structure {75.2(2)°} which reflects the reduced steric strain in the sixmembered $\overline{N(1)C(8)N(4)C(10)N(2)}$ Re ring in [Re(py₃N)(CO)₃Cl] compared with the fivemembered N(1)C(8)C(9)N(2)Re ring formed in [Re(tpy)(CO)₃Cl].

The toluene-insoluble compound isolated from

Table 4 Spectral and electrochemical data

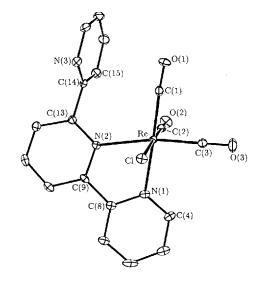
Compound	Electrochemistry		Electronic operators	Infrared anastrod
	$E_{p.c}$	$E_{p,a}$	Electronic spectra ^c λ_{max} (nm)	Infrared spectra ^d $\nu(CO)$ (cm ⁻¹)
[Re(bpy)(CO) ₃ Cl]	-1.71	-1.62	370, 291, 233	2022, 1916, 1899
[Re(tpy)(CO) ₃ Cl]	-1.71	-1.64	374, 305, 255 sh	2022, 1918, 1897
[Re(py ₃ N)(CO) ₃ CI]	-2.27^{b}		300, 258, 226 sh	2023, 1916, 1897
$[Re(py_3N)(CO)_2CI]$	-2.34^{h}		450, 342, 255	1900, 1824
$[Re(py_3P)(CO)_3Cl]$				2023, 1932, 1897
[Re(py ₃ CH)(CO) ₂ CI]				1896, 1819

^a Cyclic voltammetry measurements at glassy carbon working electrode, relative to Ag/Ag⁺ reference electrode; solvent NMP/0.1M TBA.BF₄, except for [Re(tpy)(CO)₃Cl] (DMF/0.1M TBA.BF₄). Scan rate 100 mV s⁻¹. ^b Irreversible. ^c Acetonitrile solution. ^d Dichloromethane solution, except for [Re(py₃P)(CO)₃Cl] (nujol mull), and [Re(py₃CH)(CO)₂Cl] (acetonitrile solution).

Figure 1 Infrared spectra (carbonyl stretch region) in dichloromethane solution for selected compounds: A, fac-[Re(bpy)(CO)₃Cl]; B, fac-[Re(tpy)(CO)₃Cl]; C, fac-[Re(py₃N)(CO)₃Cl]; D, [Re(py₃N)(CO)₂Cl].

this synthesis exhibits only two $\nu(CO)$ absorption peaks (Fig. 1D; Table 4), consistent with either $[Re(py_3N)(CO)_2Cl]$ (C_s) or the symmetrical $[Re(py_3N)(CO)_3]CI$ (\mathbf{C}_{3v}) formulations. However, conductance measurements indicate a zero-charged species. Although we have not yet been successful in growing satisfactory crystals of this compound for a structural determination, we are confident that this species $[Re(py_3N)(CO)_2CI]$, where the py₃N ligand is now tridentate.

Accordingly, the ligand py₃N exhibits ambidentate behaviour with respect to its coordination with the carbonylrhenium(I) centres.


$[Re(py_3CH)(CO)_xCI]$ and $[Re(py_3P)(CO)_3CI]$

Synthesis of the carbonylrhenium(I) compounds containing the tripodal ligands py₃CH and py₃P were carried out using the same general technique as for the py₃N analogue.

In the case of py₃P, only one product could be detected, and it exhibited three $\nu(CO)$ absorpotions in the infrared spectrum (Table 4). By analogy with the fac-[Re(bpy)(CO)₃Cl], fac-[Re(tpy)(CO)₃Cl] and fac-[Re(py₃N)(CO)₃Cl] compounds, it may confidently be formulated as fac-[Re(py₃N)(CO)₃Cl], with the ligand py₃P being bidentate.

For py₃CH, a product was isolated with a complicated infrared spectrum in the $\nu(CO)$ region. By analogy with the $[Re(py_3N)(CO)_rCl]$, the spectrum is consistent the isolated product being a mixture of fac-[Re(py₃CH)(CO)₃Cl] [Re(py₃CH)(CO)₂Cl] in which the py₃CH ligand has coordinated both as a bidentate and tridentate ligand. Indeed, in a preliminary separation experiment utilizing the differing solubilities of the two components in dichloromethane, the less soluble yellow compound exhibited an IR spectrum analogous to that of [Re(py₃N)(CO)₂Cl] (Table 4); the remaining component, although slightly contaminated with the yellow less soluble species, exhibited an IR spectrum consistent with that of fac-[Re(py₃N)(CO)₃Cl].

It should be noted that examples are known in which py₃CH exhibits bidentate and tridentate

Figure 2 Molecular structure and numbering scheme for fac-[Re(tpy)(CO)₃CI].H₂O. Atoms otherwise not indicated are carbons. Hydrogen atoms have been omitted for clarity.

Re-N(2)-C(9)

N(2)-C(13)-C(14) 120.0(5)

Table 5 Selected bond distances (Å) and angles (deg) for fac-{Re(tpy)(CO)₃Cl].H₂O

Atoms	Distance	Atoms	Distance
Re-Cl	2.488(2)	Re-N(1)	2.170(5)
Re-N(2)	2.206(5)	Re-C(1)	1.936(7)
Re-C(2)	1.901(7)	Re-C(3)	1.908(7)
N(1)-C(4)	1.331(8)	N(1)-C(8)	1.365(9)
C(8)-C(9)	1.477(9)	N(2)-C(9)	1.362(7)
N(2)-C(13)	1.342(8)	C(13)-C(14)	1.501(9)
N(3)-C(14)	1.335(8)	N(3)-C(18)	1.35(1)
Atoms	Angle	Atoms	Angle
Cl-Re-N(1)	83.6(1)	CI-Re-N(2)	83.2(1)
Cl-Re-C(1)	90.6(2)	Cl-Re-C(2)	178.0(2)
Cl-Re-C(3)	90.8(2)	N(1)-Re-N(2)	75.2(2)
N(1)-Re- $C(1)$	174.0(2)	N(1)-Re-C(2)	94.4(2)
N(1)-Re-C(3)	96.3(3)	N(2)-Re-C(1)	102.7(2)
N(2)-Re- $C(2)$	96.6(3)	N(2)-Re-C(3)	170.0(2)
C(1)-Re- $C(2)$	91.4(3)	C(1)-Re- $C(3)$	85.4(3)
C(2)-Re- $C(3)$	89.1(3)	Re-C(1)-O(1)	175.4(6)
Re-C(2)-O(2)	178.9(6)	Re-C(3)-O(3)	178.4(6)
Re-N(1)-C(4)	124.1(5)	Re-N(1)-C(8)	115.7(4)
N(1) - C(8) - C(9)	115.8(5)	C(8)-C(9)-N(2)	116.0(5)

coordination behaviour in the complexes [AuMe₂(py₃CH)]⁺⁷ and [Ru(py₃CH)₂]²⁺,¹¹ respectively.

Re-N(2)-C(13)

C(13)-C(14)-N(3) 114.7(6)

127.5(4)

Comments on the synthetic method

114.6(4)

The synthetic results are consistent with reported photochemical characteristics of $[Re(CO)_5Cl]^{19}$ and CO-substituted derivatives such as *fac*- $[Re(bpy)(CO)_3Cl]$. The electronic transition giving rise to absorption by $[Re(CO)_5Cl]$ in the

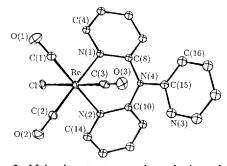


Figure 3 Molecular structure and numbering scheme for fac-[Re(py₃N)(CO)₃Cl] (molecule **a**). Atoms otherwise not indicated are carbons. Hydrogen atoms have been omitted for clarity. The numbering scheme for molecule **b** is identical to that shown for molecule **a**.

Table 6 Selected bond distances (Å) and angles (deg) for fac-[Re(py₃N)(CO)₃Cl]

Atoms	Distances		
	Molecule a	Molecule b	
Re-Cl	2.477(3)	2.476(3)	
Re-N(1)	2.208(8)	2.186(9)	
Re-N(2)	2.191(9)	2.197(9)	
Re-C(1)	1.92(1)	1.89(1)	
Re-C(2)	1.91(1)	1.87(1)	
Re-C(3)	1.91(1)	1.90(1)	
N(1)-C(4)	1.34(1)	1.35(1)	
N(1)-C(8)	1.35(1)	1.35(1)	
N(2)-C(10)	1.36(1)	1.35(1)	
N(2)-C(14)	1.35(1)	1.35(1)	
N(3)-C(15)	1.33(2)	1.33(2)	
N(3)-C(19)	1.37(2)	1.38(2)	
N(4)-C(8)	1.41(1)	1.43(1)	
N(4)-C(10)	1.41(1)	1.40(1)	
N(4)-C(15)	1.41(1)	1.40(1)	

Atoms	Angles		
	Molecule a	Molecule b	
Cl-Re-N(1)	85.1(2)	84.4(2)	
Cl-Re-N(2)	83.6(2)	82.6(2)	
Cl-Re-C(1)	92.2(4)	92.8(4)	
Cl-Re-C(2)	92.9(4)	93.0(4)	
Cl-Re-C(3)	177.1(4)	178.2(4)	
N(1)-Re- $N(2)$	80.8(3)	81.8(3)	
N(1)-Re-C(1)	96.0(4)	94.8(4)	
N(1)-Re-C(2)	176.2(4)	177.0(4)	
N(1)-Re-C(3)	92.1(4)	94.7(5)	
N(2)-Re-C(1)	174.9(4)	174.5(5)	
N(2)-Re-C(2)	95.8(4)	96.5(4)	
N(2)-Re-C(3)	95.2(5)	95.7(4)	
C(1)-Re- $C(2)$	87.3(5)	86.7(5)	
C(1)-Re- $C(3)$	88.8(6)	88.8(6)	
C(2)-Re- $C(3)$	89.9(5)	87.8(5)	
Re-C(1)-O(1)	177(1)	176(1)	
Re-C(2)-O(2)	179(1)	177(1)	
Re-C(3)-O(3)	177(1)	178(1)	
Re-N(1)-C(4)	120.1(7)	121.0(8)	
Re-N(1)-C(8)	121.1(7)	122.3(7)	
N(1)-C(8)-N(4)	116.2(9)	116.0(9)	
Re-N(2)-C(10)	120.4(7)	121.6(8)	
Re-N(2)-C(14)	122.4(8)	121.4(7)	
N(2)-C(10)-N(4)	117.1(9)	117(1)	
C(8)-N(4)-C(10)	118.7(9)	117.4(9)	
C(8)-N(4)-C(15)	123.2(9)	122.8(9)	
C(10)-N(4)-C(15)	118.0(9)	119.3(9)	
N(4)-C(15)-N(3)	113(1)	115(1)	

visible region (ca 366 nm) has been assigned mainly LF character, and photolysis in the absence of other ligands leads to the formation of

the dimer, [Re(CO)₄Cl]₂. ¹⁹ In the presence of a ligand such as 2,2'-bipyridine, photolysis of [Re(CO)₅Cl] results in the quantitative formation of [Re(bpy)(CO)₃Cl], ^{19,20} and these photosubstitution processes are very much more rapid than thermal CO-substitution rates. On the other hand. the lowest energy absorption fac-[Re(bpy)(CO)₃Cl]-type compounds is assigned principally to a Re $\rightarrow X(\pi^*)$ CT transition, in which the excited state is not substitutionally labilized.²⁰

In the present instance, the thermal reactions of the potentially tridentate ligands tpy and py₃N [Re(CO)₅Cl] give rise fac-[Re(ligand)(CO)₃Cl] species in which the tripyridyl ligands are bidentate, in a reaction which is analogous to that of the bidentate ligands bpy and phen with [Re(CO)₅Cl]. In the presence of light, the reaction involving the py₃N or py₃CH ligands also produces the tridentate species $[Re(py_3X)(CO)_7Cl]$ consistent with CO-labilization of [Re(CO)₅Cl] by visible light absorption. Additional observations reinforce this assertion. Firstly, two separate syntheses involving the py₃CH ligand, with identical reaction times but differing in that irradiation was maintained for the duration of the reaction in one case, but for only the first 10 minutes of reaction in the other, both gave products which were mixtures of the two components: although the ratio of the components may have varied, it is clear that the CO-labilization occurs in the initial stages of the reaction and therefore involves the reactant [Re(CO)₅Cl]. Secondly, attempts to promote coordination of the third N-donor of the potentially tridentate ligands tpy or py₃N in the compounds fac-[Re(ligand)(CO)₃Cl] under irradiation were totally unsuccessful.

It is interesting to note that under the conditions used in the syntheses, neither tpy or py₃P appears to give the corresponding tridentate compound. The reason for these observations is probably steric in origin. In compounds containing coordinated tpy, it is well documented that the metal–central N distance is significantly contracted compared with the metal–outer N distances, and this is presumably due to steric constraints imposed by the tridentate tpy ligand.²¹

The ligand tpy has been shown to exhibit ambidentate coordination behaviour: Deacon et al.²² have synthesized and structurally characterized the series of ruthenium(II) complexes cis,cis-[Ru(Cl)₂(CO)₂(tpy)] (in which tpy is bidentate), and the related species cis,

cis-[Ru(Cl)₂(CO)₂(tpyH)]⁺ in which the free pyridyl-N atom is protonated, as well as the corresponding decarbonylated species cis- and trans-[Ru(Cl)₂(CO)(tpy)] (in which tpy is tridentate).

Py₃P, with its increased 'bite' angle compared with py₃CH and py₃N, also appears to prefer bidentate coordination in the present case: it is noted that in structural studies of the $[Ru(py_3X)_2]^{2+}$ complexes,¹¹ the cations show increasing distortion from the ideal D_{3d} symmetry with an increase in the bridgehead X–C(py) bond distance in the series py₃N < py₃CH < py₃P. As a further example, in the series of complexes $[Ru(py_3X)(NH_3)_3]^{2+}$ (X = N, CH, COH, P), only in the case of py₃P did a tridentate species not form.²³

Nature of metal-ligand interaction for tripodal ligands py₃X

The title tripodal ligands are known to exhibit π -back-bonding interactions with low oxidation state metals.8 Because of the presence of the bridging atom between the pyridyl rings the backbonding characteristics of the tripodal ligands py_3X (X = N, CH, P), relative to ligands such as bpy or phen which possess the α,α' -di-imine chromophore, are somewhat counter-intuitive. It has been suggested that the particular stereochemical requirements of these ligands serve to maximize the appropriate metal-ligand interaction,8 and molecular-orbital calculations are in progress to probe the nature of the bonding.²⁴

The ambidentate nature of the coordination of py₃N might therefore have been expected to provide additional insight into this issue, since in the bidentate coordination mode the chromophore is equivalent to two pyridyl rings separated by the bridging atom, in contrast with the tridentate coordination mode where the bridgehead atom may serve to constrain the three pyridyl rings in a conformation particularly favourable for overlap between the ligand p_{π} and metal t_{2g} orbitals. However, the $\nu(CO)$ absorptions in the infrared spectra of the series of compounds fac-[Re(bpy)(CO)₃Cl], fac-[Re(tpy)(CO)₃Cl], fac-[Re(py₃N)(CO)₃Cl], and fac-[Re(py₃P)-(CO)₃Cl] are virtually identical in nature and position (Table 4; Fig. 1); it has been acknowledged for some time that in substituted metal compounds of this CO-stretching frequency shifts are not a reliable

means of assessing the π -bonding abilities of ligands. ²⁵ Neither are the electrochemical characteristics of the compounds in this study particularly revealing, because the reduction of the compounds containing the ligand py₃N are irreversible, compared with the reversible redox behaviour exhibited by the bpy- and tpy-containing species (Table 4).

Carbon dioxide reactivity

In earlier studies, Juris et al.⁹ reported that the compound characterized as '[Re(tpy)(CO)₂Cl]' chemically catalysed the electrochemical reduction of carbon dioxide in a similar manner to fac-[Re(bpy)(CO)₃Cl].^{2,6} In view of the present reassessment of the formulation of the tpy-containing species as fac-[Re(tpy)(CO)₃Cl], in which tpy is bidentate rather than tridentate, the similarity is not unexpected.

We have observed that the fac-[Re(py₃X)(CO)₃Cl] and [Re(py₃X)(CO)₂Cl] compounds do mediate in the electrochemical reduction of CO₂. However, the initial reductions of the [Re(py₃N)(CO)_xCl] (x = 2, 3) species occur at considerably more negative potentials ($E_{\rm p,c} = -2.34$ and -2.27 V vs Ag/Ag⁺, respectively) than those of fac-[Re(bpy)(CO)₃Cl] and fac-[Re(tpy)(CO)₃Cl] ($E_{\rm p,c} = -1.71$ V in both cases; Table 4). Given that for the CO₂/CO₂⁻ couple in water $E^{\circ} = -1.90$ V (vs normal hydrogen electrode; 26 i.e. ca = -2.5 V vs Ag/Ag⁺), the compounds containing the tripodal ligands py₃X do not appear to be particularly attractive candidates for electrocatalysis of CO₂ reduction.

CONCLUSIONS

The present work has shown an apparent special stability of species of the general formula fac-[Re(L—L)(CO)₃L] where L—L is a bidentate ligand, even in instances where L—L is potentially tridentate. If the synthetic procedure (CO-substitution of [Re(CO)₅Cl]) is undertaken under irradiation by visible light, for the ligands py₃N and py₃CH compounds of the general formula [Re(L₃)(CO)₂Cl] containing the respective tridentate ligands are also obtained, whereas for tpy and py₃P they are not. The reason for this difference may be stereochemical in nature.

Acknowledgment Useful discussion with Professor M I Bruce in the early stages of this work is gratefully acknowledged. The Australian Research Council is thanked for financial support.

REFERENCES

- Collin, J P and Sauvage, J-P Coord. Chem. Rev., 1989, 93: 245, and references therein
- Hawecker, J, Lehn, J-M and Ziessel, R Helv. Chim. Acta, 1986, 69: 1990
- 3. Sullivan, B P and Meyer, T J Organometallics, 1986, 5: 1500
- Sullivan, B P, Bruce, M R M, O'Toole, T R, Bolinger, C M, Megehee, E, Thorp, H and Meyer, T J Electrocatalytic Carbon Dioxide Reduction. In Catalytic Activation of Carbon Dioxide, Ayres, W M ed, A.C.S Symp. Ser. No 363, Washington DC, 1988, pp 52-90
- O'Toole, T R, Margerum, L D, Westmoreland, T D, Vining, W J, Murray, R W and Meyer, T J J. Chem. Soc., Chem. Commun., 1985, 1416
- Kutal, C, Weber, M A, Ferraudi, G and Geiger, D Organometallics, 1985, 4: 2161
- Canty, A J, Minchin, N J, Healy, P C and White, A H J. Chem. Soc., Dalton Trans., 1982, 1795; Byers, P K, Canty, A J, Skelton, B W and White, A H Aust. J. Chem., 1985, 38: 1251
- Hafeli, T A and Keene, F R Aust. J. Chem., 1988, 41: 1379
- 9. Juris, A, Campagna, S, Bidd, I, Lehn, J-M and Ziessel, R Inorg. Chem., 1988, 27: 4007
- Wibaut, J P and La Bastide, G L C Recl. Trav. Chim. Pays-Bas, 1933, 52: 493
- Keene, F R, Snow, M R, Stephenson, P J and Tiekink, E R T Inorg. Chem., 1988, 27: 2040
- Wibaut, J P, de Jonge, A P, Van der Voort, H G P and Otto, P Ph H L Recl. Trav. Chim. Pays-Bas, 1951, 70: 1054
- Sheldrick, G M SHELX 76, Program for crystal structure determination, Cambridge University, UK, 1976
- Johnson, C K ORTEP-II Report ORNL-3794, Oak Ridge National Laboratory, Tennessee, USA, 1971
- Ibers, J A and Hamilton, W C International Tables for X-Ray Crystallography, Vol IV, Kynoch Press, Birmingham, UK, pp 99, 149
- 16. Horn, E and Snow, M R Aust. J. Chem. 1980, 33: 2369
- Guilhem, J, Pascard, C, Lehn, J-M and Ziessel, R J. Chem. Soc., Dalton Trans., 1989, 1449
- Addison, C C, Davis, R and Logan, N J. Chem. Soc., Dalton Trans., 1974, 2070
- Wrighton, M S, Morse, D L, Gray, H B and Otteson, D K J. Am. Chem. Soc., 1976, 98: 1111
- Wrighton, M S and Morse, D L J. Am. Chem. Soc., 1974, 96: 998
- Adcock, P.A., Keene, F.R., Smythe, R.S. and Snow, M.R. Inorg. Chem., 1984, 23: 2336, and references therein

- 22. Deacon, G B, Patrick, J M, Skelton, B W, Thomas, N C and White, A H Aust. J. Chem., 1984, 37: 929
- 23. Moritz, P S, Diamantis, A A, Keene, F R, Snow, M R and Tiekink, E R T Aust. J. Chem. 1988, 41: 1353
- 24. Anderson, P A and Keene, F R (work in progress)
- 25. Angelici, R J J. Inorg. Nucl. Chem., 1966, 28: 2627
- Schwarz, H A and Dodson, R W J. Phys. Chem., 1989,
 93: 409; Surdhar, P S, Mezyk, S P and Armstrong, D A
 J. Phys. Chem., 1989, 93: 3360